Addition to a theorem due to Frobenius

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frobenius’ Theorem

Given a manifold M of dimension n + k, attach to every p ∈ M an ndimensional subspace of the tangent space Tp(M). It is natural to ask if this collection of subspaces is the collection of tangent spaces to a family of submanifolds that cover M . In this paper we prove Frobenius’ Theorem, which gives a necessary and sufficient condition for the answer to be yes.

متن کامل

A Polyhedral Frobenius Theorem with Applications to Integer Optimization

We prove a representation theorem of projections of sets of integer points by an integer matrix W . Our result can be seen as a polyhedral analogue of several classical and recent results related to the Frobenius problem. Our result is motivated by a large class of non-linear integer optimization problems in variable dimension. Concretely, we aim to optimize f(Wx) over a set F = P ∩ Z, where f ...

متن کامل

Frobenius kernel and Wedderburn's little theorem

We give a new proof of the well known Wedderburn's little theorem (1905) that a finite‎ ‎division ring is commutative‎. ‎We apply the concept of Frobenius kernel in Frobenius representation theorem in finite group‎ ‎theory to build a proof‎.

متن کامل

Proof of a Theorem Due to Heaviside.

in 1914, showing a decidedly lower transmission of radiation through the water cell, in the case of Venus and Saturn. The intensity of the planetary radiation increases with decrease in the density of the surrounding atmosphere and (as interpreted from the water cell transmissions) in per cent of the total radiation emitted, is as follows: Jupiter (0), Venus (5), Saturn (15), Mars (30) and the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1904

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1904-01179-9